
A Table Presentation Language for Database Applications

Woei-Kae Chen, Ping-Hung Chen, and Wen-Tzeng Huang
Department of Computer Science and Information Engineering,

Computer Center, and
Department of Electronic Engineering,

 National Taipei University of Technology, Taipei, Taiwan, R.O.C.
{wkchen,cbh,wthuang}@ntut.edu.tw

Abstract

Database applications often utilize a large number of
reports. There are tools, report generators, as well
as programming-level supports that facilitate the
generation of reports. However, these supports are
restricted to simple predefined presentation formats
with limited flexibility. In general, a report consists
of one or more data sources, which are not necessar-
ily stored in formats that are ready for presentation.
Therefore programmers must write application pro-
grams to convert query results into suitable presen-
tation formats. In particular, the aim is to place the
right data into the right position so that the report is
easy to understand. Since the results of a query are
inherently tabular, by restricting the reports into
tabular formats, the problem reduces to the trans-
formation of data between tables. This paper stud-
ies how the position of one data is transferred to an-
other. We characterize and formulate fundamental
transformations into high-level transformation op-
erations, including normal, transpose, fill, combine,
and matching. We then propose a high-level Table
Presentation Language (TPL) to realize these opera-
tions. TPL can be used to create sophisticated re-
ports without the overhead of writing tedious
low-level programs. Therefore the complexity of
generating reports is greatly reduced. We have
used TPL to construct several web-based database
applications. In our experience, it is convincing that
the language is very useful and practical for creating
database query and report applications.

Keywords: Database, Report Generation, Language,
Table Presentation, Web, CGI Generator

1 Introduction

It can be argued that report generation is one of the
most frequently performed tasks in database applica-
tions. A report is the results of queries, which are
organized and formatted to satisfy a particular pres-
entation requirement. To facilitate the generation of
reports, there are tools (e.g., [2], [7], and [9]), report
generators (e.g., [1] and [8]), and programming-level
supports (e.g., function libraries) that can be used.
However, these supports are restricted to simple pre-
defined presentation formats with limited flexibility.

For example, report tools that offer printing of tables
(the results of SQL queries) can easily be found, with
the limitation that only fixed and regular formats can
be used.

In general, a report usually consists of several
data sources, which are not necessarily stored in
formats that are ready for presentation. Therefore,
before printing, programmers must write application
programs to convert different data sources into suit-
able presentation formats for each report. In par-
ticular, the aim is to place the right data into the right
position so that the report is easy to understand.
Although these conversion programs are not difficult
to write, they are very tedious and require the inter-
vention of programmers.

As an example, Figure 1 shows the transforma-
tion from the information of reservations into a seat
arrangement for a theater. In this example, there are
two input tables (data sources): RESERVATIONS and
PRICES. The RESERVATIONS table contains infor-
mation for each reservation, e.g., the seat for Mr. A is
reserved at row 1 and column 1. The PRICES table
contains information for the price of the seats, e.g., a
seat in row 1 costs 100 dollars. The report of this
example is the table SEATS, which is a presentation
that shows the actual layout of the theater, the price
of each row, and the location that everyone sits.

For the generation of the SEATS table, there are
two transformation operations to be done. The first
is to transfer the information of each row of the
RESERVATIONS table into the correct position of the
SEATS table, which shows the layout with a
two-dimensional presentation. The next is to trans-
fer the price of each row from the PRICES table into
corresponding position of the SEATS table. It is
easy to see that writing programs to perform these
transformations is not difficult. In fact, simple
loops suffice to accomplish these operations. It is
also possible to simplify coding efforts by using li-
braries that supports these transformation operations.
However, writing programs such as embedded C++
or 4GL (4th generation language) to perform these
conversions is considered a low-level solution, which
is very tedious and inflexible.

This paper studies a restricted form of report,
i.e., reports in tabular format. Using a tabular for-
mat to present a report is frequently used, because the
data shown in a table is easy to understand, and can
easily be used, analyzed, and compared. In fact,

many non-tabular presentations can also be consid-
ered as tables without part or all of the borders.
Since the results of an SQL query is inherently tabu-
lar, by restricting the target reports also into tabular
formats, the problem of writing programs is reduced
to the transformation of data between tables. In this
paper, we study the problem of transferring data from
one table to another with emphasis on how the posi-
tions of the data are rearranged. We characterize and
formulate fundamental transformations into
high-level transformation operations. These opera-
tions include normal, transpose, fill, combine, and
matching. We show that by using combinations of
these operations, reports of sophisticated formats can
be created.

RESERVATIONS

Row Column Name
1 1 A
1 2 B
2 3 C
3 2 D
3 4 E
4 3 F
: : :

 PRICES
Row Price

1 100

2 200

3 300

4 250

 SEATS
 1 2 3 4 Price

1 A B 100
2 C 200
3 D E 300
4 F 250

Figure 1. Transferring reservations into seats

We propose a Table Presentation Language
(called TPL) to support these operations. TPL is
designed as a scripting language and is both
high-level and concise. The language also supports
several output formats for different applications.
Users of TPL can generate sophisticated reports
without writing tedious low-level programs.
Therefore the complexity of generating reports is
greatly reduced.

TPL supports both client/server and web-based
applications. For web-based applications, our TPL
system can be configured as a CGI (Common Gate-
way Interface) generator. TPL has a strong instruc-
tion sets that can perform transformation operations,
which makes TPL different from the other CGI gen-
erators (e.g., [2], [7], and [9]). That is TPL is capa-
ble of presenting reports of arbitrary format; the other
tools cannot.

The rest of this paper is organized as follows.
Section 2 describes researches and tools that are re-
lated to this paper. Section 3 discusses the trans-
formation operations. Section 4 defines the TPL
language. The implementation and applications of
TPL is given in Section 5, and a conclusion is given
in Section 6.

2 Related works

There are researches studying the generation of re-
ports. In particular, Tarassenko [8] proposed a re-
porter system that can produce sophisticated
read-to-use reports. By using the reporter system,
the development of a report is focusing at describing
tables with column/rows, rules of data selection and
summarization, and formatting the report in destina-
tion document. A document-driven approach to re-
port generation is proposed by Chan [1]. It is more
flexible than the traditional schema-driven approach.
Contents of a report can be specified using a trans-
formation language together with queries that re-
trieve data from different databases.

A natural application of the TPL language is a
dynamic web-page generator for database applica-
tions. There are several possibilities in writing dy-
namically generated web pages. The most funda-
mental solution is the writing of CGI scripts. These
are programs, when invoked, running on HTTP serv-
ers that dynamically construct web pages in HTML
format. Scripting languages such as Perl are usually
used to code CGI programs. However, for
web-based database applications, CGI programs tend
to be too low-level to code. Therefore, CGI gen-
erators, which automate or simplify the process of
writing web-based database applications, become
important.

There are researches and tools (e.g., [2][7] and
[9]) address CGI generators for database applications.
The fundamental insight of these researches is based
on the fact that the content of a dynamic web page is
the result of SQL queries with additional HTML
formats. Therefore by substituting the SQL state-
ment and HTML templates, different web pages can
be created. For example, the Microsoft IDC (Inter-
net Database Connectivity) [7] accompanied with IIS
(Internet Information Server) use an “idc” file for
SQL source and an “htx” file for HTML templates.
The major disadvantage of these tools is that they are
all limited to simple formats without flexibility.
Although, they are good for certain fixed-format da-
tabase applications, extensions are usually difficult or
impossible. Therefore, as a replacement, using
HTML-embedded language becomes the current
trend.

With the support of HTTP servers, using
HTML-embedded languages is usually more efficient
than CGI scripts both in terms of execution and de-
velopment time. As an example, using PHP (Hy-
pertext Preprocessor) [3], an HTML-embedded
scripting language, web developers can write dy-
namically generated web pages quickly. Since PHP
is strong with database support, generating database
reports by PHP scripts is also easy. However, using
PHP exhibits the same deficiency as using C++ or
4GL discussed in the previous section. Other tools
such as ASP (Active Server Page) [6] and JSP (Java
Server Page) [5] also have the same problem.

3 Transformation operations

This section discusses the transformation operations
that can be performed between two tables. A trans-
formation operation is composed of three major fac-
tors: (1) the source, (2) the target, and (3) the type of
transformation to be performed. We will discuss
these factors for each of these transformations.

 0 1 2 3 4 5 6 . . n-2 n-1
0
1
2
3
4
5
:

m-2
m-1

Figure 2. Cells with different shapes

Type Block Expression Simplified Expression
single cell C0R0..C0R0 C0R0

single column C2R0..C2R* C2
multiple column C4R0..C5R* C4..C5

single row C0R1..C*R1 R1
multiple row C0R3..C*R4 R3..R4

block C6R6..C*R*-1 C6R6..C*R*-1
entire table C0R0..C*R* C0..C* or R0..R*

Figure 3. Expressions for cells with different shapes

An entry in a table is called a cell. The posi-

tion of a cell is denoted as , where is the
column index and is the row index of the cell.
We use to indicate the cell that is located at
the top-left corner of a table. A rectangular block of
cells is denoted as . We use “

yx RC

22 yx RC

xC

yR

xC

00RC

11 ..yR *” to
denote the last row or the last column of a table; an
expression of x−∗ is also allowed. Figure 2
shows cells of six different shapes, including single
cell, single column, multiple columns, single row,
multiple rows, and block. Figure 3 gives the block
expressions for each shape of the example shown in
Figure 2. For simplicity, we also use simplified
expressions, which are abbreviations of block ex-
pressions.

We now turn our attention to how cells are
transferred from one position to another. In the
following subsections, we discuss each of the five
different transformations, namely normal, transpose,
fill, combine, and matching.

3.1 Normal transformation

The most fundamental transformation is to translate
the position of a cell (or a block of cells) to another
position. Figure 4 gives an example that translates

 to . We use the notation
Target to express a transformation,

where Source indicates the cells to be transformed,
Target indicates the target position, and operation
specifies the transformation operation to be per-
formed with an optional option. For the operation of
Figure 4, it can be expressed as

. Note that a normal trans-
formation does not change shapes. Therefore, we
do not need to specify the entire range of the target
cells. Only the target position, which indicates the
top-left corner of the target block, must be specified.

2411 .. RCRC

Source

2411 .. RCRC

1401 .. RCRC

→option

01RC →

operation

normal

option

SOURCE

0 1 2 3 4 . . j
0
1 A B C D
2 E F G H
3
:
i

 DESTINATION
 0 1 2 3 4 . . n

0 A B C D
1 E F G H
2
3
:
m

Figure 4. An example of normal transformation
(C) 012411 .. RCRCR normal →

3.2 Transpose transformation

A transpose transformation alters the position of a
cell by interchanging the row and column indices of
the cell. A block of cells can be transformed simul-
taneously. During a transpose transformation, a
target position can be assigned, resulting a normal
transformation at the same time. For example, Fig-
ure 5 performs a transpose transformation for

 with a target position . The result of
the transformation is the block C . By using
transpose transformations, vertical presentations can
be switched to horizontal ones, and vice versa.

2411 .. RCRC 02RC

30.. RCR 32

SOURCE

0 1 2 3 4 . . j
0
1 A B C D
2 E F G H
3
:
i

 DESTINATION
 0 1 2 3 4 . . n
0 A E
1 B F
2 C G
3 D H
:
m

Figure 5. An example of a transpose transformation
() 022411 .. RCRCRC transpose →

3.3 Fill transformation

The fill transformation is used to alter the presenta-
tion layout in order to fit certain height and/or width
constraints. A fill transformation with row major
ordering reads cells sequential form the source block
and places the cells in a row-major ordering (zigzag)
into the specified target position. For example,

Figure 6 shows a fill transformation with row-major
ordering and number of columns set as 3. Figure 7
is another example with column-major ordering.
Note that the source cells are always processed in
row major ordering. In case that a column major
ordering for the source is required, a transpose trans-
formation should be performed first.

SOURCE
 0 1 2 3 4 . . j
0 A B C D E
1 F G H I J
2
3
4
:
i

DESTINATION
 0 1 2 3 4 . . n
0
1 A B C
2 D E F
3 G H I
4 J
:
m

Figure 6. A fill transformation with row major
ordering () 111400

3.. RCRCRC columnfill  → =

SOURCE

 0 1 2 3 4 . . j
0 A B C D E
1 F G H I J
2
3
:
i

DESTINATION
 0 1 2 3 4 . . n
0 A E I
1 B F J
2 C G
3 D H
:
m

Figure 7. A fill transformation with column major
ordering (C) 021400

4.. RCRCR row → =fill

SOURCE

 0 1 2 3 4 . . j
0
1 A E
2 B F
3 C G
4 D H
:
i

DESTINATION
 0 1 2 3 4 . . n

0 AE
1 BF
2 CG
3 DH
4
:
m

Figure 8. An example of a column-combine trans-
formation () 034211 .. RCRCRC column →combine

3.4 Combine transformation

A combine transformation performs merging of cells.
It can be used to merge two or more cells into a sin-
gle cell, two or more columns into a single column,
two or more rows into a single row, or a block into a
cell. There are three kinds of merge options,
namely column combine, row combine, and column
and row combine. Figure 8, 9, and 10 show the
result of combine transformation with different op-
tions. Note that for the column and row combine
option, the cells of the first row in the source are
combined first. This is because the source cells are
considered as the result of database queries.

Therefore the data cells of the same row contain in-
formation that is closely related. After a column
and row combine transformation, the result becomes
a single cell.

SOURCE
0 1 2 3 4 . . j

0
1 A B C D
2 E F G H
3
:
i

DESTINATION
0 1 2 3 4 . . n

0 AE BF CG DH
1
2
3
:
m

Figure 9. An example of a row-combine transfor-
mation () 012411 .. RCRCRC row →combine

SOURCE

0 1 2 3 4 . . j
0
1 A B C D
2 E F G H
3
:
i

DESTINATION
0 1 2 3 4 . . n

0
1
2
3 ABCDEFGH
:
m

Figure 10. An example of a column and row combine
transformation (C) 324211

,.. RCRCR rowcolumncombine  →

3.5 Matching transformation

The matching transformation is a lot different from
the other transformations described in the previous
sections. For the normal, transpose, fill, and com-
bine transformations, the final position of a cell de-
pends only on the type of transformation to be per-
formed and the target position that is assigned. For
matching transformations, the final position of a cell,
however, depends also on the content of the source
cells. For example, the seat of a person, shown in
Figure 1, is determined by its row and column index
of the RESERVATIONS table.

To perform a matching transformation, keys
must be assigned for both the source and the destina-
tion tables. A matching operation transfers the cells
of the source table with a certain key into the position
of the destination table that matches the key. Figure
11 is an example of a row matching. In this exam-
ple, the block is to be transferred from
the SOURCE table to the DESTINATION table with
of the SOURCE table and of the DESTINATION
table assigned as keys (denoted as). For
row 0 of the SOURCE table, the key of the cells la-
beled A and F is 1. Therefore, the cells A and F are
transferred to row 4 of the DESTINATION table where
the keys match. Where does the key value of the
destination tables come from? They can either be
assigned manually or be transformed from the source
tables.

4403 .. RCRC

1C

0C

01 : CC

SOURCE
 0 1 2 3 4 . . j

0 1 A F
1 2 B G
2 3 C H
3 4 D I
4 5 E J
:
i

DESTINATION
 0 1 2 3 4 . . n
0 5 E J
1 4 D I
2 3 C H
3 2 B G
4 1 A F
:
m

Figure 11. An example of using row-matching trans-
formation () 24403

0:1.. CRCRC ccmatching →

Note that the key of the source table must be

expressed in , where xC x is the column to be
matched. The key of the destination table, on the
other hand, can be either C , , or both. The
reason is that, for the source tables (data obtained
from databases), the data cells of the same row con-
stitute a record of information. Therefore, for the
cells within the same row, it is natural to set one of
the cells as the key and to transfer the other cells ac-
cording to the key. Hence the key of the source
table must always be a column. In case that the data
cells of the source table must be processed in a col-
umn major format, a transpose translation should be
performed first.

x yR

For the destination table, the key may either be a
column or a row, which results in different matching
strategies. Therefore, the keys of a matching may
either be C or , which are called row
matching and column matching respectively. It is
possible to perform both column matching and row
matching simultaneously. Figure 12 gives an ex-
ample. Note that, since both the column and row
indices of a target cell are determined by matching,
no target position should be specified.

yx C: yx RC :

SOURCE

 0 1 2 3 4 . . j
0 1 1 A
1 1 2 B
2 2 3 C
3 3 2 D
4 3 4 E
: : : :
i : : :

 DESTINATION
 0 1 2 3 4 . . n

0 1 2 3 4 . .
1 1 A B
2 2 C
3 3 D E
4 4
: :
m

Figure 12. An example of using column and row
matching ()  → 0:2,0:0

*404 .. RCCCmatchingRCRC

After matching transformation, it is possible that
two or more cells end up with the same target posi-
tion. These cells are combined as the previous sec-
tion described.

3.6 Replace, Append, and Separator

In general, to generate a report, many transfer opera-
tions must be performed. Therefore, it is possible

that the destination table is non-empty before a
transfer operation is performed. If a source cell s is
transferred to a target cell t that is non-empty, there
are two possibilities to handle the situation: replace
and append. The default behavior is the replace
option, which simply replace t with s. An append
option, on the other hand, replaces t with the con-
catenation of s and t.

Destination
0 1 2 3 . . n

0
1 A B
2 C D
3
:
m

Figure 13. A non-empty destination table

SOURCE
0 1 2 3 . . j

0 E
1 F
2 G
3 H
:
i

DESTINATION
 0 1 2 3 . . n

0 E
1 A F
2 C G
3 H
:
m

Figure 14. An example of using a replace option
() 023101 .. RCRCRC normal →

SOURCE

0 1 2 3 . . j
0 E
1 F
2 G
3 H
:
i

 DESTINATION
 0 1 2 3 . . N

0 E
1 A BF
2 C DG
3 H
:
m

Figure 15. An example of using an append option
() 023101 .. RCRCRC appendnormal  →

Figure 13 shows a non-empty DESTINATION ta-
ble. In Figure 14, a block of cells is transferred
from the SOURCE table into the DESTINATION table
shown in 13. It can be seen that the cells labeled F
and G replaces the original cells. In Figure 15, the
same operation is performed with an append option,
which results concatenation of B and F, and D and G.

Sometimes, it is useful to concatenate related
data in a single cell, but leave them distinguishable
for later use. For example, a report may print out a
cell that contain two values with a line break to dis-
tinguish the two values. In this paper, we propose
the concept of using separators to resolve this prob-
lem. A separator is a special tag that is inserted
between two values that are concatenated. If the
separator option is enabled, a separator is inserted
automatically when a concatenate operation is per-
formed.

Figure 16 is an example that specifies the sepa-
rator option. In this figure, we use the “ • ” notation
to denote a separator, which is supposedly invisible.
TPL is designed to recognize the existence of sepa-
rators. In practice, users of TPL may replace the
separators into meaningful notations or control char-
acters before the resulting table is outputted. It
should be noted that the append and separator options
also apply to other transfer operations, such as com-
bine and matching.

SOURCE
 0 1 2 3 . . j
0 E
1 F
2 G
3 H
:
i

DESTINATION
 0 1 2 3 . . n

0 E
1 A B F •
2 C D• G
3 H
:
m

Figure 16. An example of using both append and
separator options

(C) 023101
,.. RCRCR separatorappendnormal  →

3.7 Cooperation of transformation operations

It is possible to perform two transformation opera-
tions simultaneously. However, not every pair of
operations can be used together. To avoid ambigu-
ity, we have to define whether a certain combination
is allowed so that the semantics of the operations
makes sense. Figure 17 gives whether one opera-
tion is allowed to cooperate with another. In the
Figure, a “Yes” denotes that the cooperation of two
operations is allowed. It is easy to see that only
combine and matching can be executed simultane-
ously. The other pair of operations does not pro-
duce meaningful results.

 normal transpose fill combine matching
normal No No No No

transpose No No No No
fill No No No No

combine No No No Yes
matching No No No Yes

Figure 17. The cooperation of transformation operations

4 The Table Presentation Language

In this paper, we propose a table presentation lan-
guage (called TPL) to realize the transformation op-
erations described in section 3, and to support vari-
ous input and output formats. TPL is deliberately
designed to be as simple as possible. As shown in
Figure 18, there are only 10 instructions, which are
classified as the input, transfer, and output operations.
A typical TPL script applies the input instructions to
obtain information from databases, processes inputs
with the transfer operations, and then generates re-
ports (outputs) with the output instructions.

Group Instruction Usage
SetDatabase Assign database connectivity
CreateTable Create a table
Execute Execute an SQL

Input

Set Assign the content of cells
ClearTable Clean up the content of a table
Copy Perform transfer operations Transfer
ChangeSeparator Replace separator with strings
SetHTML Set output table in HTML formats
Output Output a table Output
Print Print a string

Figure 18. TPL instruction set

TPL is designed as a scripting language. Ex-
cept for tables, no declaration of identifiers is re-
quired. The language itself is case insensitive.
The following grammar diagram defines TPL. The
copy instruction, which performs transfer operations
as described in Section 3, is probably the most com-
plicated instruction. The operation options syntax
of the copy instruction defines the kind of transfor-
mation operations to be performed. As shown in
the output instruction, TPL supports three different
output formats: text, CSV, and HTML. The other
instructions are self-explanatory; we will skip the
explanations for each instruction.

password

SetDatabase driver ;
String
Value

source

user

=

CreateTable tableName ;
Execute SQLstatement ;tableNameInto
Set Into

Source
Range

String
Value

tableName

;

Increase RowMajor

Decrease ColumnMajor

.

-

Note : The String Value must can be converted to integer
 while using Increase or Decrease option.

ClearTable tableName ;
Copy Source

Range sourceTableName

;

Into

Target
Index targetTableName

Operation
Options

ChangeSeparator
Source
Range

String
Value

tableName ;Into

Output

;

CSV

HTML

WithAnchor

tableName Text

paramTableName

String
Value=Separator

-

.

-

Print
String
Value

;

SetH TM L Into

xSSS ,,, 21 K

yTT ,,, 21 K

Source
Range

H TM L
O ption

tableN am e ;

H TM L
Option

A lign =
String
Value

,

A nchor
B G C olor

Border
CellPadding
C ellSpacing

C ellType
C olSpan

FontC olor
FontSize
FontStyle

Fram e
H eight
Prefix

R ow Span
R ules

Sum m ary
VA lign
W idth

Prefix

.

Source
Range

[C
Table
Index

]

C
Table
Index

R
Table
Index

R
Table
Index

R. .
Table
Index

C. .
Table
Index

R
Table
Index

. . R
Table
Index

@

(*)
n+

-

Table
Index

. m .

m, n : integer, m >= 0, n >= 0.
T a rg e t
In d e x

[C
T a rg e t

C o lu m n
In d e x

]R
T a rg e t

R o w
In d ex

@

(C)i

T a b le
In d ex

. .

i : C o lu m n in d ex o f S o u rc e tab le , in teg er, i > = 0
j : R o w in d ex o f T arge t ta b le , in tege r, j > = 0

T a rg e t
C o lu m n

In d e x

: R j

,

(C)i

T a b le
In d ex

. .

i : C o lu m n in d ex o f S o u rc e tab le , in teg er, i > = 0
j : C o lu m n in d ex o f T arge t ta b le , in teg er, j > = 0

T a rg e t
R o w

In d e x

: C j

,

O peration

O ptions

T ranspose

Fill =C olum n
R ow

k

C olum n C om bine
R ow C om bine W ith Separator

W ith Separator

R eplace

A ppend

. .

. .

. .

..

k : integer, k > 0 .

. 1
1

String
Value

character

" "

" "

Note : character is any ASCII character.

In addition to the ability of acquiring data from
databases, TPL is capable of using parameters from
its execution environments, e.g., command line ar-
guments and environment variables. This is espe-
cially important for web-based applications, where a
POST or a GET request stores parameters in standard
input and environment variables. Typically, these
parameters are used to customize part of the SQL
queries in a TPL script so that different results can be
generated with the same script. Our TPL system
offers a mechanism called parameter substitution.
A “foo” within a string indicates a request of using
parameter substitution for the variable foo. That is
all occurrences of “foo” is replaced with the actual
value given by the execution environment.

…
…

TPL Interpreter

SQL

Data
Database

S1

S2

Sx

…
…

Text

CSV

HTML

TPL
Source File

T1

T2

Ty

O1

Oz

…
……

…

…
…

Results of SQL

Temporary
tables

Output
tables

Transfer
operations

Assign output
formats

Figure 19. TPL system architecture

5 The implementation and applications of TPL

The TPL system architecture is shown in Figure 19.
We implemented a TPL interpreter (called TPLI) to
process TPL instructions. The main input of TPLI
is a TPL source file, which contains TPL instructions
to obtain data sources from database servers and to
perform transformation operations. The operation
of the TPLI can be described as follows.
 1. TPLI reads instructions from TPL source file.
 2. TPLI creates tables according to

the number of Execute instructions. TPLI then
requests database servers to execute SQL and
stores the results of these queries into corre-
sponding tables.

 3. TPLI sequentially executes the next TPL in-
struction of the input file to perform transforma-
tions, creating intermediate tables (T)

and/or output tables (O), if necessary. zOO ,,, 21 K

 4. Repeat step 3 until all instructions are executed.
Several implementation issues were considered.

We decide to implement an interpreter instead of a
compiler. Without the overhead of compilation, a
large amount of time developing applications can be
saved. It is also easier to use and to debug. The
data of each data cell is considered type less; strings
are used as internal representations for all data cells.
We use Java to implement TPLI, because Java is
platform independent and, with the aid of JDBC [4],
it is easy to implement database operations.

One of the applications of TPL is a web-based
query application generator. By using TPL scripts,
dynamic web pages can be generated on the fly by
TPLI. For example, TPLI can be configured as a
CGI program that executes TPL scripts on demand.
In this configuration, an URL of the form
“http://www.domain/cgi-bin/tpl?filename=tpl_script”
indicates a request to execute the “tpl_script” script
by TPLI (located at /cgi-bin/tpl).

In order to demonstrate the use of TPL for
web-based applications, we have written a few ap-
plications at “http://dbs.cc.ntut.edu.tw/~cbh/TPL.html”
(note: to fit into our system configuration, our URL
format for TPLI is slightly different from the one
described above). This is a replacement to
“http://dbs.cc.ntut.edu.tw/~dbquery/netoffice/course.html,”
which was written in Informix 4GL. A screenshot
of an example web page is shown in Figure 20. It
can be seen that TPL can produce results that are
almost the same as those of 4GL, with much less
coding efforts.

Figure 20. A web page produced by TPL scripts

6 Conclusions

We proposed the concept of using transformation
operations to generate reports. We showed that, by
using combinations of a small set of transfer opera-
tions, sophisticated reports could be created. Pre-
vious works such as [1] and [8] focus on the model-
ing of report generation. Our results contribute to
the data selection process of [8] and transformation
language of [1].

We defined a simple and high-level scripting
language TPL to support transfer operations. We

have also implemented a TPL interpreter in Java.
Our implementation supports both client/server and
web-based applications. The web-based support
can be used as dynamic web-page generators for da-
tabase applications. In comparison with popular
web-based solutions for databases such as [3], [5],
and [6], using TPL has the advantage of being simple
and high-level. Although, TPL is not as flexible,
the reduction of developing time is significant. In
comparison with CGI generators such as [2], [7], and
[9], TPL is not only more high-level, but also much
more powerful in presentation capability.

We have applied TPL scripts for a few online
applications. Several examples can be found in
“http://www.ntut.edu.tw/english/newpage6.htm.”
According to our experience, writing TPL scripts is
indeed much easier and more efficient than writing
dedicated programs. There are, however, limita-
tions to TPL. For example, the output of TPL in
text or CSV format is not ready for printing. It must
be post-processed by spreadsheet applications for
printouts. We propose the following improvements
for future studies:
z A visual environment for the development of

TPL scripts.
z Integrate TPL with JSP for performance ac-

celerations.
z Support an HTML-embedded version of TPL.
z Enhance TPL to support other output formats

such as XML and WML.
z Enhance TPL to support high-quality printouts

directly.

7 References

[1] Chan D.K.C., A Document-driven Approach to

Database Report Generation, Database and Ex-
pert Systems Applications, Proceedings. Ninth
International Workshop, pp.925-930, 1998.

[2] Hunter A., Ferguson R.I., Hedges S., SWOOP:
An Application Generator for ORACLE/WWW
Systems, The fourth International World Wide
Web Conference, pp.234-242, December 11-14,
1995.

[3] Hypertext Preprocessor, http://www.php.net/.
[4] Java JDBC, http://java.sun.com/products/jdbc.
[5] Java Server Pages,

http://java.sun.com/products/jsp.
[6] Microsoft Active Server Pages,

http://msdn.microsoft.com/asp/.
[7] Microsoft Internet Database Connector,

http://msdn.microsoft.com/library/default.asp?url
=/library/en-us/iisref/html/psdk/asp/idcg0tgy.asp

[8] Tarassenko P.F., Bukharova M.S., System for
database reports generating, Science and Tech-
nology, KORUS '01. Proceedings. The Fifth
Russian-Korean International Symposium,
pp.84-88 vol.1, 2001.

[9] WebDBC, http://www.ndev.com/index.php.

